

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Selective Sorption of Metal Oxoanions from Dilute Solution by Bead Cellulose Sorbent

Eva Mištová^a; Helena Parschová^a; Zdeněk Matějka^a

^a Department of Power Engineering, Institute of Chemical Technology, Prague, Czech Republic

To cite this Article Mištová, Eva , Parschová, Helena and Matějka, Zdeněk(2007) 'Selective Sorption of Metal Oxoanions from Dilute Solution by Bead Cellulose Sorbent', *Separation Science and Technology*, 42: 6, 1231 — 1243

To link to this Article: DOI: 10.1080/01496390601174364

URL: <http://dx.doi.org/10.1080/01496390601174364>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Selective Sorption of Metal Oxoanions from Dilute Solution by Bead Cellulose Sorbent

Eva Mištová, Helena Parschová, and Zdeněk Matějka

Institute of Chemical Technology, Department of Power Engineering,
Prague, Czech Republic

Abstract: Bead sorbent Perloza MT 50 was used for selective removal of metal W, Mo, V, Ge, and Sb oxoanions. All experiments were carried out by dynamic column sorption. Sorption of tungstate and molybdate anions was successful. The sorption capacity decreased with increasing concentration of accompanying anions (chlorides, sulphates) and with increasing pH (3.5–5.5). Sorption of vanadate anion was possible but the sorption capacity was very low. Sorption of Ge(IV) and Sb(III) oxoanion was negligible.

Keywords: Cellulose, tungsten, molybdenum vanadium, antimony, germanium, sorption

INTRODUCTION

Of the many metals that may be present as contaminants in natural waters and wastewater, a few (specifically arsenic, molybdenum, tungsten, vanadium, antimony, and selenium) occur as oxoanions.

Many different methods for the removal of metal-oxoanions from the water solution exist.

1. Liquid-liquid extraction (1–3) it is a selective method, but extraction agent is not completely insoluble in the water. Therefore, this method is not suitable for treatment of drinking water resources.
2. Ion-exchange by standard strong or weak base anion resin (4, 5, 6, 7)—this method is usually not selective enough for metal-oxoanions. A serious

Received 1 August 2006, Accepted 11 December 2006

Address correspondence to Eva Mištová, Institute of Chemical Technology, Department of Power Engineering, 166 28 Prague, Czech Republic. E-mail: mistovae@vscht.cz

problem is the desorption, some of the metal-oxoanions (Mo, V, Cr) are difficult (6) to be desorbed and the sorption capacity in the subsequent sorption run decreases considerably.

3. Ion-exchange by chelating resin (8–13) it is the most suitable process for the removal of metal-oxoanions from diluted solutions.
4. Flocculation by Fe^{3+} salts (14,15) —it is a widely used method for the removal of arsenic from aqueous solutions. Its disadvantage is the irreproducibility in achieving As-concentrations lower than 0.01 mg/L.
5. Nanofiltration and ultra filtration (16,17) —these methods are very effective and selective. Polyvalent ions are removed easily by nanofiltration and more spacious ions or molecules are removed by ultra filtration.

It is known (18–21) that low molecular weight substances containing diol-groupings in an appropriate steric conformation can form complexes with metal-oxoanions. These hydroxycompounds can form two kinds of the coordination diol- or polyol- complexes with metal-oxoanions:

1. mono-nuclear complexes (Ge, B, As);
2. bi (*or poly*)-nuclear complexes (V, W, Mo).

The complexation reactions between oxoanions and diol-compounds (diol-ligands) are pH-sensitive. Optimum pH-range for particular oxoanions to form diol (polyol) complexes was determined (22).

The formation of these diol- or polyol- complexes can be utilized for the selective uptake of oxoanions from the water streams, if a solid matrix containing diol- ligands with appropriate sterical configuration of OH-groups will be used as a selective sorbent.

Cellulose (Fig. 1) is the most abundant naturally occurring organic substance, being found as the principal component of cell walls in higher plants where it provides the main structural feature. Cotton is almost pure cellulose at 98%, flax is 80%, and wood is 40–50% with the other 50% made up from other complex polysaccharides.

Bead cellulose (23, 24) is a pure regenerated cellulose which is prepared by a modified viscose procedure. It is characterized by a regular spherical shape of individual particles, controlled porosity, accessibility for high molecular weight substances, high deformation stability, and adequate chemical reactivity. Bead cellulose, which is distributed under the trade mark PERLOZA® (25), is a hydrophilic matrix (26) with the polymer structure stabilized by hydrogen bonds only—there are no covalent cross-linkings.

Different applications of this material are described, for instance physical supports (27), chromatographic materials (23), various derivatives with different functions like ion exchangers (28), metal chelating adsorbents (29), chemisorbents (30), affinity adsorbents (31), and immobilized enzymes carriers (32). Bead cellulose can also be coupled with various active substances giving composite systems.

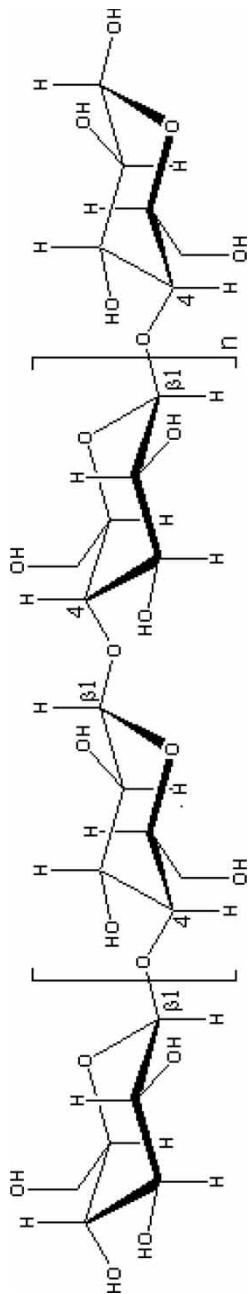


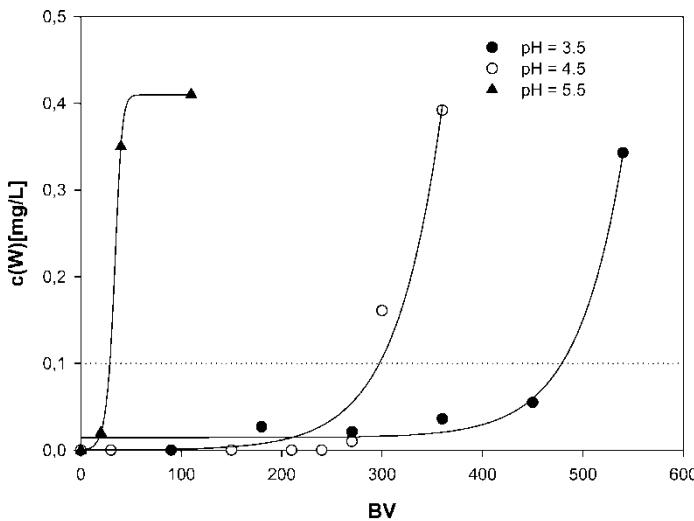
Figure 1. Structure of cellulose.

Previously it was pointed out by ^{11}B NMR studies (33), that crosslinked polysaccharides (Dextran, Sephadex) are able to form polyol-complexes between OH-groups of saccharides and borate oxoanions. The main goal of this study is to determine, whether the steric configurations of OH-groups in the molecule of crosslinked cellulose will guarantee the fast enough reaction rate to form stable enough coordination complexes on dynamic column operation, that this polymeric material can be considered as a selective sorbent for metal-oxoanions.

EXPERIMENTAL

All experiments were carried out in dynamic column sorption mode. The loading solution passed through the column (inner diameter 10 mm) containing 10 ml of sorbent Perloza MT 50 (particles size 30–250 nm, stability within pH range 1–14) at the specific flow rate of 3 BV/h. Fractions of filtrate were collected and metal concentrations were analyzed with ICP-OES technique.

For the preparation of test solutions, $\text{Na}_2\text{WO}_4 \cdot 2\text{H}_2\text{O}$, NH_4VO_3 , $\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$, GeO_2 , and Sb_2O_3 of analytical purity were used. The solutions were freshly prepared before the use, the initial concentration of metal was 0.5 mg/L and the concentration of accompanying anions (Cl^- , SO_4^{2-}) was 100 or 500 mg/L. The experimental pH values ranged from 3.5 to 10. The Perloza MT 50 sorbent was regenerated with 1 mol/L NaOH solution after sorption of oxoanions W(VI), Mo(VI), and V(V), or with 1 mol/L HCl solution after sorption of Ge(IV) and Sb(III). Before every sorption run of W(VI), Mo(VI), and V(V) the sorbent was conditioned by 1 mol/L HCl solution, to keep all OH-groups and also carboxylic groups (34) (which are produced by partial oxidation of $-\text{CH}_2\text{OH}$ groups during the purification of raw material) in hydrogen form.


For the sorption run the limiting breakthrough concentration of metal was 0.1 mg/L. The sorption capacities of the sorbent were calculated according to the equation:

Sorption capacity = (volume at the breakthrough point \times mass concentration)/volume of the sorbent [mg Me/L of sorbent], resp. [mmol-Me/L of sorbent].

RESULTS AND DISCUSSION

Tungstate Oxoanion

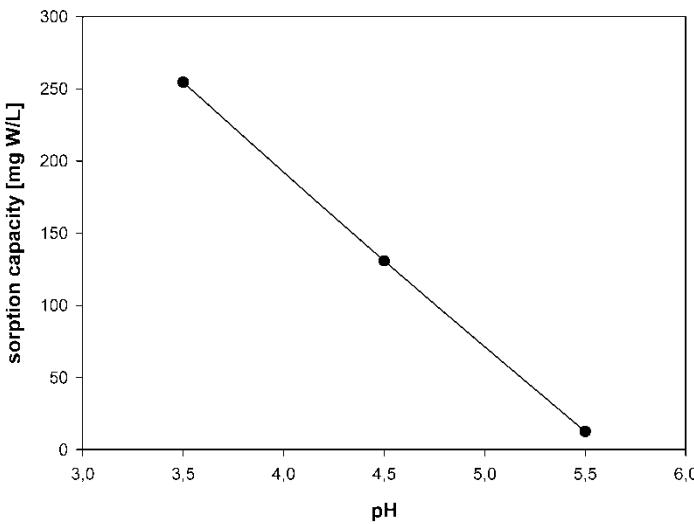

The influence of pH on the tungstate oxoanion sorption is shown in the Fig. 2. The concentration of W(VI) in the feed solution was 0.5 mg/L and the concentration of the accompanying anions (Cl^- , SO_4^{2-}) was 100 mg/L. The sorption of W(VI) anion was successful at the pH of 3.5 when the

Figure 2. The history of W-sorption—Effect of pH.

sorption capacity was 250 mg/L (1.4 mmol/L), at the pH of 4.5 the breakthrough capacity decreased to 130 mg/L (0.7 mmol/L) and at pH of 5.5 the capacity was only 13 mg/L (0.07 mmol/L).

The capacity of the sorbent decreased very rapidly (Fig. 3). These results come up to the expectation that the tungsten's coordination complexes are more stable in the acid pH range of pH, where W is present in the form of iso-polyanions (35) $\text{W}_{12}\text{O}_{41}^{10-}$ or $\text{H}_2\text{W}_{12}\text{O}_{40}^{6-}$. In these polyanions there are more

Figure 3. The history of W-sorption—Effect of pH on sorption capacity.

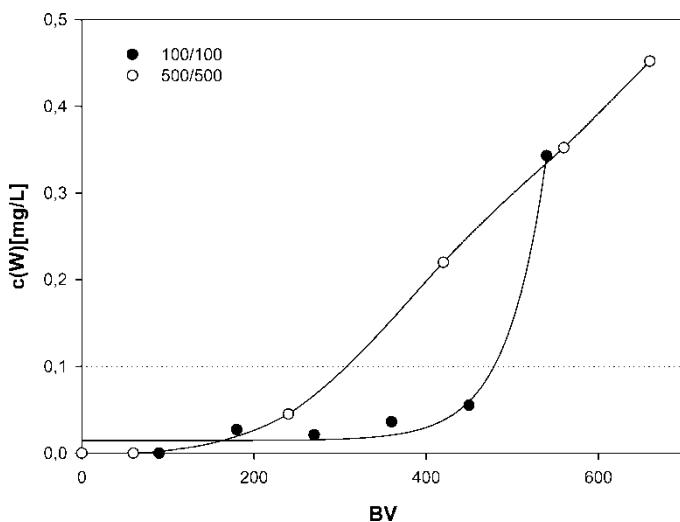


Figure 4. The history of W-sorption—Effect of accompanying anions.

reactive sites (W-O bonds) to form polyolcomplexes with saccharide OH-groups, compared to simple WO_4^{2-} anion, which is present in the neutral and alkaline environment.

When the concentration of sulfates and chlorides in the feed solution was increased from 100 mg/L to 500 mg/L at pH = 3.5 the sorption capacity decreased from 254.5 mg/L (1.384 mmol/L) to 180 mg/L (0.98 mmol/L) (Fig. 4).

Under the presence of increased concentration of accompanying anions in the feed solution the heteropolyanions are formed (36) whose complexing ability is much smaller compared to that of isopolyanions and, consequently, the W-breakthrough capacity is decreased.

The elution of tungsten by 1 M NaOH is shown in Figs. 5, 6–7 BV are sufficient for tungstate displacement, the recovery ratio of tungstate was higher than 90%, tungsten was completely striped within 10 BV of regeneration solution. This result is very important for subsequent sorption run.

Molybdate Oxoanion

The influence of pH (Fig. 6) on the sorption was very similar to the case of tungstate sorption. At the concentration of Mo(VI) in the feed solution 0.5 mg/L and concentration of accompanying anions (Cl^- , SO_4^{2-}) 100 mg/L the breakthrough capacity was 95 mg/L (0.99 mmol/L) at pH of 3.5, at pH of 4.5 the capacity decreased down to 18 mg/L (0.19 mmol/L) and at pH of 5.5 capacity was only 10 mg/L (0.11 mmol/L). In this case the

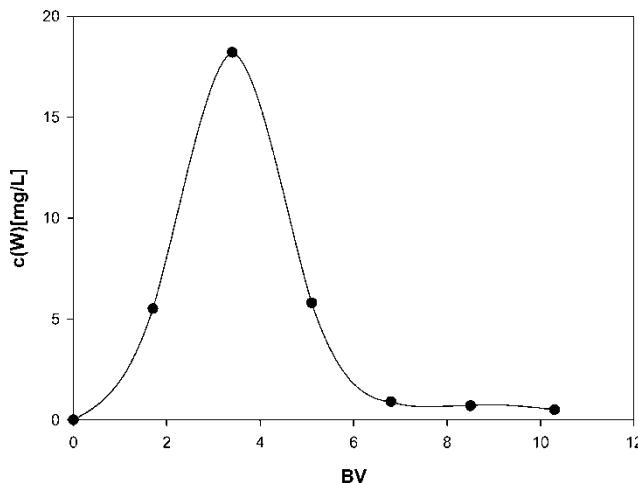


Figure 5. Desorption of tungsten by NaOH solution.

sorption capacity decreased more rapidly than in the case of the sorption of tungstate. This fact is very typical for the sorption of molybdate because the chelate of Mo-oxoanion is less stable than the W-chelate (17) and it is much more sensitive to change of pH.

The effect of pH on the sorption of molybdate oxoanions can be seen in Fig. 7, too. This relation shows that the optimum pH value was 3.5, when the sorption capacity is the highest, while the pH values 4.5 and 5.5 were not suitable for the sorption of molybdate oxoanions by the sorbent Perloza MT 50.

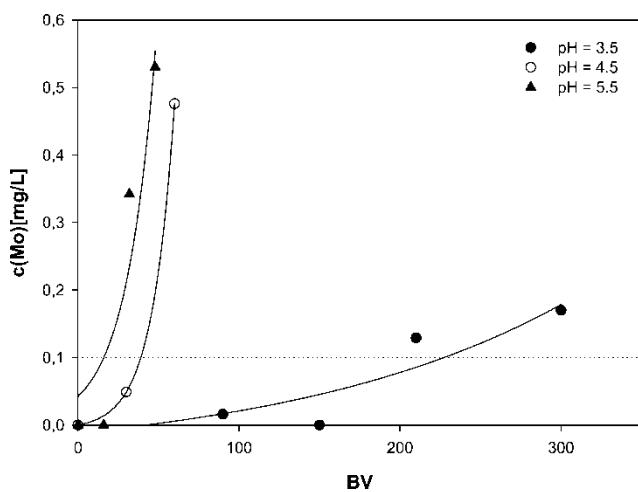


Figure 6. The history of Mo-sorption—Effect of pH.

Figure 7. The history of Mo-sorption—Effect of pH on sorption capacity.

The sorption capacity of molybdate oxoanion decreased, when the concentration of sulfates and chlorides increased from 100 mg/L to 500 mg/L (Fig. 8). The sorption capacity in the presence 500 mg/L of accompanying anions was 50 mg/L (0.52 mmol/L). This negative effect of accompanying anions, which is observed also for the sorption of W(VI) anions, is limiting the use of this sorbent in the case when high concentration of accompanying anions is present in the feed solution.

The recovery of molybdate oxoanion provided good yields, when 6 BV of 1 M solution of NaOH (Fig. 9) was used for regeneration, the recovery ratio of

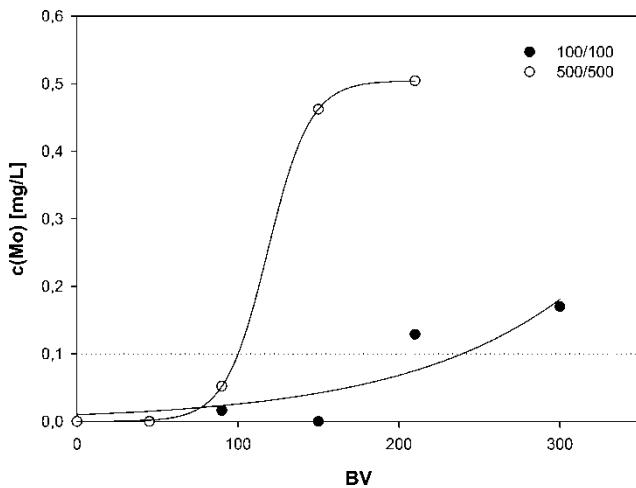


Figure 8. The history of Mo-sorption—Effect of accompanying anions.

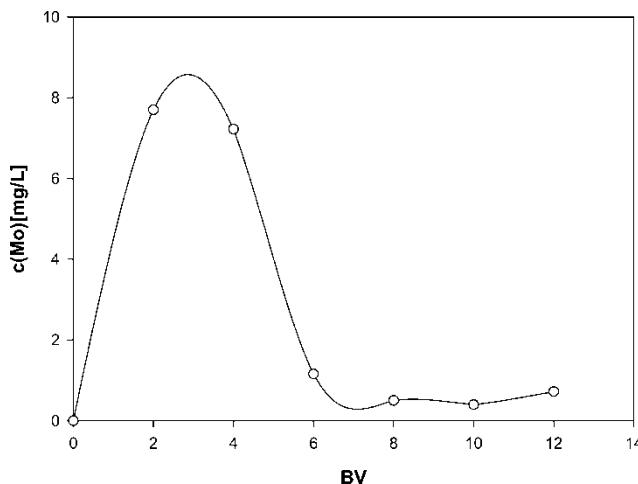
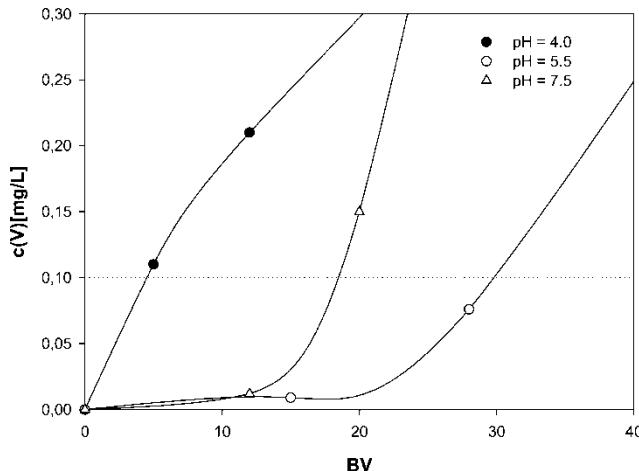


Figure 9. Desorption of molybdenum by NaOH solution.

molybdate within 6 BV was higher than 80%, Mo was completely stripped within 10 BV of the regeneration solution. This high desorption efficiency enables the reuse of the sorbent Perloza MT 50.

Vanadate Oxoanion


Sorption of vanadate oxoanion was not very successful. However, a certain sorption capacity exists (Fig. 10) for vanadium at pH of 5.5 it was treated 30 bed volumes of loading solution [i.e. the capacity is 15 mg/L (0.3 mmol/L)] and at pH of 7.5 were processed 18 BV [i.e. 10 mg/L (0.2 mmol/L)] before the breakthrough concentrations were achieved.

A very strong influence of pH on the vanadate sorption capacity (Fig. 11) is determined. Optimum pH values for the sorption were found to be around 5.5 (weakly acidic range of pH). A very low sorption capacity around pH value 4.0 is probably the consequence of the vanadate oxoanion transformate to cationic form of vanadium as VO_2^+ , VO^{2+} and these species cannot form the complex with OH-groups of the sorbent.

Antimonate(III) and Germanate Oxanions

In this case, oxoanions of Sb(III) and Ge(IV) breakthrough within the first fractions of the outlet solution. All sorptions were unsuccessful under all selected conditions.

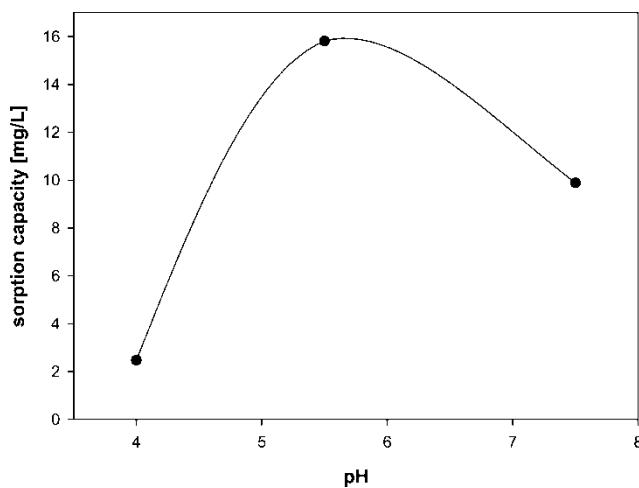

This result is probably caused by the form of Ge and Sb mono-nuclear complexes. For the formation of these types of complexes an optimum

Figure 10. The history of V-sorption—Effect of pH.

steric configuration and number of OH-groups in the molecule is very necessary. But the OH-groups in a *cis*-position are not located at the adjacent C-atoms, and therefore they are not close enough even after cross-linking to form a mononuclear diol complex such as Ge-cellulose type.

The comparison of breakthrough capacities for W-, Mo-, and V-oxoanion is given in Table 1.

Figure 11. The history of V-sorption—Effect of pH on sorption capacity.

Table 1. The comparison of breakthrough capacities for W-, Mo-, V-oxoanions

c (Me)/c(Cl ⁻)/c(SO ₄ ²⁻)/pH	Sorption capacity [mmol/L]		
	W(VI)	Mo(VI)	V(V)
0.5/100/100/3.5	1.40	0.99	0.05
0.5/500/500/3.5	0.98	0.52	—
0.5/100/100/4.5	0.71	0.19	0.07
0.5/100/100/5.5	0.07	0.11	0.30
0.5/100/100/7.5	—	—	0.20

CONCLUSIONS

The sorbent Perloza MT 50 having in the structure OH-groups is suitable to separate tungstate, molybdate, and vanadate oxoanions from water. It is the advantage of this material, that the crosslinking process will bring OH-groups close together and binuclear complexes with W, Mo, and V oxoanions can be formed, without any additional and costly functionalization of the polymeric matrix, which is required for other chelating resins.

The best results of sorption of tungstate and molybdate are obtained when the feed solution contains only low concentration (100 mg/L) of accompanying anions (sulfates and chlorides). The sorption capacity was higher at pH 3.5 of the feed solution, when the sorption capacity is 1.40 mmol/L and 0.99 mmol/L, respectively. The sorption of vanadate anion is possible but the sorption capacity is very low (maximum is 0.30 mmol/L—pH of feed solution is 5.5). Sorption of Ge(IV) and Sb(III) oxoanion was not successful under the studied conditions.

ACKNOWLEDGEMENT

This work was carried out with financial support of Research proposal (MSM 6046137304) from the Ministry of Education, Youth, and Sports of the Czech Republic. Thanks are also due to Iontosorb, Ústí nad Labem, for the supply of sorbent material.

REFERENCES

1. Kalyanaraman, S. and Khopkar, S.M. (1977) Liquid-liquid extraction of arsenic(III) with diluted tributyl phosphate. *Talanta*, 24 (1): 63.
2. Suzuki, N., Satoh, K., Shoji, H., and Imura, H. (1986) Liquid-liquid extraction behavior of arsenic(III), arsenic(V), methylarsonate and dimethylarsinate in various systems. *Anal. Chim. Acta*, 185: 239.

3. Karve, M.A. and Khopkar, S.M. (1993) Liquid-liquid extraction of niobium(V) in the presence of other metals with high molecular mass amines and ascorbic acid. *Talanta*, 40 (6): 913.
4. Ficklin, W.H. (1983) Separation of arsenic(III) and arsenic(V) in ground waters by ion-exchange. *Talanta*, 30 (5): 371.
5. Fung, Y.S. and Dao, K.L. (1995) Trace enrichment and ion chromatographic determination of metal oxoanions in environmental water samples. *Anal. Chim. Acta*, 309: 173.
6. Horng, L.L. and Clifford, D. (1997) The behavior of polyprotic anions in ion-exchange resins. *Reactive & Functional Polymers*, 35: 41.
7. Vaaramaa, K. and Lehto, J. (2003) Removal of metals and anions from drinking water by ion exchange. *Desalination*, 155 (2): 157.
8. Schilde, U. and Uhlemann, E. (1992) A simple method for the control of ion-exchange processes with boric acid using specific chelating resins. *Reactive Polymers*, 18 (2): 155.
9. Schilde, U. and Uhlemann, E. (1993) Separation of several oxoanions with a special chelating resin containing methylamino-glucitol groups. *Reactive Polymers*, 20 (3): 181.
10. Schilde, U., Kraudelt, H., and Uhlemann, E. (1994) Separation of the oxoanions of germanium, tin, arsenic, antimony, tellurium, molybdenum and tungsten with a special chelating resin containing methylaminoglucitol groups. *Reactive Polymers*, 22 (2): 101.
11. Fung, Y.S. and Dao, K.L. (1995) Trace enrichment and ion chromatographic determination of metal oxoanions in environmental water samples. *Anal. Chim. Acta*, 309: 173.
12. Matějka, Z., Parschová, H., Ruszová, P., Jelínek, L., Houserová, P., Mištová, E., Beneš, M., and Hrubý, M. (2004) Selective uptake and separation of oxoanions of molybdenum, vanadium, tungsten, and germanium by synthetic sorbents having polyol moieties and polysaccharide-based biosorbents. *Fundamentals and Applications of Anion Separation*; Moyer, B.A. and Singh, R.P. (eds.), Kluwer Academic/Plenum Publishers: New York.
13. Matějka, Z., Parschová, H., Jelínek, L., Mištová, E., Ruszová, P., and Šebesta, F. (2003) Selective removal of As, Sb, Se, and Be from water streams; screening of uptake mechanisms and sorbent-types. *J. Ion. Exch.*, 14: 237.
14. Soldi, T., Pasevento, M., and Alberti, G. (1996) Separation of vanadium(V) and -IV by sorption on an iminodiacetic chelating resin. *Anal. Chim. Acta*, 323: 27.
15. Han, B., Runnells, T., Zimbron, J., and Wickramasinghe, R. (2002) Arsenic removal from drinking water by flocculation and microfiltration. *Desalination*, 145 (1–3): 293.
16. Vrijenhoek, E.M. and Waypa, J.J. (2000) Arsenic removal from drinking water by a “loose” nanofiltration membrane. *Desalination*, 130 (3): 265.
17. Sato, Y., Kamg, M., Kamei, T., and Magare, Y. (2002) Performance of nanofiltration for arsenic removal. *Water Research*, 36 (13): 3371.
18. Mikešová, M. and Bartušek, M. (1979) Complexes of germanic acid with mannitol, sorbitol, maltol, and chromotropic and kojic acids. *Coll. Czech. Chem. Commun.*, 44 (11): 3256.
19. Mikešová, M. and Bartušek, M. (1978) Reaction of molybdate and tungstate with oxalate, mannitol, and sorbitol. *Coll. Czech. Chem. Commun.*, 43 (7): 1867.
20. Mikan, A. and Bartušek, M. (1980) The reactions of oligoalcohols with arsenic, arsenous, boric, and germanic acids. *Coll. Czech. Chem. Commun.*, 45 (10): 2642.

21. Bartušek, M. and Šustáček, V. (1983) Chelates of vanadium(V) with organic hydroxy compounds in aqueous solutions. *Coll. Czech. Chem. Commun.*, 48 (10): 2785.
22. Yasuda, S. and Kawazu, K. (1988) *Bunseki Kagaku*, 37: 17.
23. Peska, J., Stemberg, J., Hradil, J., and Ilavsky, M. (1976) Cellulose in bead form. Properties related to chromatographic uses. *Journal of Chromatography*, 125 (3): 455.
24. Stemberg, J. (1988) Bead cellulose. *Separation and Purification Methods*, 17: 155.
25. www.iontosorb.cz (1.12.2006).
26. Peska, J., Stemberg, J., and Blace, Z. (1978) Spherical celluloseparticles. Czech Patent No. 172 640.
27. Stemberg, J., Peska, J., Paul, D., and Philipp, B. (1979) Bead cellulose—a novel macroporous substrate for ion exchangers and similar systems. *Acta Polymerica*, 30 (12): 734.
28. Matejka, Z. (1984) Bead cellulose anion exchangers for ultrapure water. *Effluent & Water Treatment Journal*, 24 (7): 275.
29. Svoboda, L. and Vorechovsky, P. (1944) Sorption of cadmium and lead by chelating ion exchangers Ostsorb OXIN, Ostsorb DETA, and Ostsorb DTTA. *Coll. Czech. Chem. Commun.*, 59 (6): 1311.
30. Breier, A., Gemeiner, P., Marko, V., and Drobnička, L. (1984) Selective chemisorbents. Part 3: Selective binding of thiols to benzaldehyde derivatives of cellulose. *Reactive Polymers, Ion Exchangers Sorbents*, 2 (3): 189.
31. Mislovicova, D., Gemeiner, P., Kuniak, L., and Zemek, J. (1980) Affinity chromatography of rat liver lactate dehydrogenase on the Remazol derivative of bead cellulose. *Journal of Chromatography*, 194 (1): 95.
32. Gemeiner, P., Kuniak, L., and Zemek, J. (1980) Preparation of p-aminobenzyl cellulose and its utilization for immobilization of enzymes. *Coll. Czech. Chem. Commun.*, 45 (10): 2847.
33. Yoshimura, K., Miyazaki, Y., Sawada, S., and Waki, H. (1996) ^{11}B NMR studies on complexation of borate with linear and crosslinked polysaccharides. *J. Chem. Soc., Faraday Trans.*, 92 (4): 651.
34. Chaluš, F. (1980) *Využití derivátů celulózy při ionexové chromatografii kovových iontů*; Academia: Praha.
35. Angus, H.J.F. and Weigel, H. (1964) Complexes between polyhydroxy compounds and inorganic oxy-acids. IV. Dimolybdate and ditungstate ions as complexing agents, and paper electrophoresis of maltodextrinols and isomaltodextrinols in molybdate and tungstate solutions. *Journal of the Chemical Society*, (Oct): 4000.
36. Pope, M.T. (1983) *Heteropoly and Isopoly-oxometalates*; Springer-Verlag: Berlin.